

Thursday 21 June 2012 – Afternoon

A2 GCE MATHEMATICS

4724 Core Mathematics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4724
- List of Formulae (MF1)
 Other materials required:

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Scientific or graphical calculator

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

1 Simplify

(i)
$$\frac{1-x}{x^2-3x+2}$$
, [2]

(ii)
$$\frac{(x+1)}{(x-1)(x-3)} - \frac{(x-5)}{(x-3)(x-4)}$$
. [4]

2 Use integration by parts to find $\int \ln(x+2) dx$.

[5]

3 (i) Expand
$$\frac{1+x^2}{\sqrt{1+4x}}$$
 in ascending powers of x, up to and including the term in x^3 . [6]
(ii) State the set of values of x for which this expansion is valid. [1]

- (ii) State the set of values of x for which this expansion is valid.
- Solve the differential equation 4

$$e^{2y} \frac{dy}{dx} + \tan x = 0,$$

given that x = 0 when y = 0. Give your answer in the form y = f(x). [6]

In the diagram the points A and B have position vectors **a** and **b** with respect to the origin O. Given that $|{\bf a}| = 3$, $|{\bf b}| = 4$ and ${\bf a}.{\bf b} = 6$, find

(i) the angle
$$AOB$$
, [2]

(ii)
$$|a-b|$$
. [3]

Use the substitution $u = 1 + \sqrt{x}$ to show that 6

$$\int_{4}^{9} \frac{1}{1 + \sqrt{x}} \, \mathrm{d}x = 2 + 2 \ln \frac{3}{4} \,.$$
 [7]

- 7 Find the exact value of $\int_0^{\frac{1}{6}\pi} (1 \sin 3x)^2 dx.$ [7]
- 8 (a) Find the gradient of the curve $x^2 + xy + y^2 = 3$ at the point (-1, -1). [4]
 - (b) A curve C has parametric equations

$$x = 2t^2 - 1, \ y = t^3 + t$$

- (i) Find the coordinates of the point on *C* at which the tangent is parallel to the *y*-axis. [3]
- (ii) Find the values of t for which x and y have the same rate of change with respect to t. [3]

9 (i) Express
$$\frac{x^2 - x - 11}{(x+1)(x-2)^2}$$
 in partial fractions. [5]

- (ii) Find the exact value of $\int_{3}^{4} \frac{x^{2} x 11}{(x+1)(x-2)^{2}} dx$, giving your answer in the form $a + \ln b$, where a and b are rational numbers. [4]
- **10** Lines l_1 and l_2 have vector equations

$$\mathbf{r} = -\mathbf{i} + 2\mathbf{j} + 7\mathbf{k} + t(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$$
 and $\mathbf{r} = 2\mathbf{i} + 9\mathbf{j} - 4\mathbf{k} + s(\mathbf{i} + 3\mathbf{j} - 2\mathbf{k})$

respectively. The point A has coordinates (-3,0,6) relative to the origin O.

- (i) Show that A lies on l_1 and that OA is perpendicular to l_1 . [3]
- (ii) Show that the line through O and A intersects l_2 . [4]
- (iii) Given that the point of intersection in part (ii) is *B*, find the ratio $|\overrightarrow{OA}| : |\overrightarrow{BA}|$. [3]

C	Question		Answer	Marks	Guidance
1	(i)		$x^{2}-3x+2 = (x-1)(x-2)$ or $(1-x)(2-x)$ oe	B1	
			Obtain $-\frac{1}{x-2}$ or $\frac{1}{2-x}$ or $\frac{-1}{x-2}$ or $\frac{1}{-(x-2)}$ ISW	B1	Not $\frac{-1}{-(2-x)}$ Accept WW
			If Partial Fractions are used, apply normal mark scheme.		
				[2]	
1	(ii)		Attempt single fraction or 2 fractions with same relevant denom	M1	e.g. $(x-1)(x-4)[(x-3) \text{ or } (x-3)^2]$
			Fully correct fraction(s) before any simplification	A1	
			Relevant numerator = $3x-9$ or $3x^2-18x+27$	B1	Can award if no denominator
			Final answer = $\frac{3}{(x-1)(x-4)}$ or $\frac{3}{x^2 - 5x + 4}$ ISW	A1	
				[4]	
			S.R. If partial fractions are used on each fraction	(M1)	
			$-\frac{1}{2}+\frac{2}{2}$	(A1)	
			$\begin{array}{c} x - 1 & x - 3 \\ 2 & 1 \end{array}$	(A 1)	
			$\frac{2}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	(A1)	
			$\begin{bmatrix} x-3 & x-4 \\ -\frac{1}{x-1} + \frac{1}{x-4} \end{bmatrix}$ ISW	(A1)	
2			Write (or imply as) $\int 1.\ln(x+2)(dx)$ (ln $x+\ln 2 \rightarrow M0$)	M1	OR: $t = ln(x+2)$ and attempt to connect dx and dt
			Correct 'by parts' 1 st stage $x \ln(x+2) - \int \frac{x}{x+2} (dx)$	A1	$\int te^t(dt)$
			Any suitable <u>starting idea</u> for integrating $\frac{x}{x+2}$	M1	Attempt by parts with $u = t$, $\frac{dv}{dt} = e^t$
1			[e.g. change num to $x+2-2$ or use substitution $x+2=u$]		
			$\int \frac{x}{x+2} (dx) = x - 2 \ln(x+2) \text{ or } x + 2 - 2 \ln(x+2)$	A1	$te^t - e^t$
			Overall result = $x \ln(x+2) - x + 2 \ln(x+2)$ [(+c) or (-2+c)] ISW	A1	
			SR: Correct answer with no working	[5] (B2)	

Question		on	Answer	Marks	Guidance
3	(i)		The first 5 marks are awarded for expansions of either		
			$(1+4x)^{-\frac{1}{2}}$ or $(1+4x)^{\frac{1}{2}}$		
			Expansion of $(1+4x)^{-\frac{1}{2}}$; First 2 terms = $1-2x$	B1	<u>Or</u> $(1+4x)^{\frac{1}{2}} = 1+2x$
			3rd term = $\frac{-\frac{1}{2} \cdot (-\frac{1}{2} - 1)}{2} \cdot 16x^2$ [Accept $4x^2$ for $16x^2$]	M1	3rd term = $\frac{\frac{1}{2} - \frac{1}{2}}{2} \cdot 16x^2$ [ditto]
			$=+6x^2$	A1	$= -2x^2$
			4th term = $\frac{-\frac{1}{2} \cdot (-\frac{1}{2} - 1) \cdot (-\frac{1}{2} - 2)}{2.3} \cdot 64x^3$ [Accept $4x^3$ for	M1	4th tm = $\frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{2.3}$.64x ³ [ditto]
			$[64x^3]$	A 1	
			$= -20x^{2}$ $1 - 2x + 7x^{2} - 22x^{3} = 1 + ax + (b+1)x^{2} + (a+c)x^{3}$	A1 ft	$= + 4x^{2}$
			1 2x + 7x 22x , 1 + ax + (b + 1)x + (a + c)x		and at least one $@$ M1 obtained
				[6]	and at reast one (g) with obtained
3	(ii)		$ x < \frac{1}{4}; -\frac{1}{4} < x < \frac{1}{4}; \{-\frac{1}{4} < x, x < \frac{1}{4}\}$ no equality	B1	But not $\{-\frac{1}{4} < x \text{ OR} \ x < \frac{1}{4}\}$ If choice mark what appears to be
				61	the final answer.
4				[1] M1	may be implied later
			$+/-\int e^{-y} (dy)$ and $+/-\int \tan x (dx)$ seen	1111	
			$\int e^{2y} \left(dy \right) = \frac{1}{2} e^{2y}$	B1	
			$\int \tan x (\mathrm{d}x) = \ln \sec x \text{ or } -\ln \cos x $	B1	Accept ln secx or –ln cosx
			Subst $x = 0$, $y = 0$ into their equation containing $f(x)$, $g(y)$ and c	M1	S.R. Using def integrals: M1 $\int_0^x = \int_0^y$ followed by A2 or A0
			$c = \frac{1}{2}$ WWW (or poss $-\frac{1}{2}$ if c on LHS)	A1	
			$y = \frac{1}{2} \ln(1 - 2 \ln \sec x) \text{ or } \frac{1}{2} \ln(1 + 2 \ln \cos x) \text{ oe } WWW$	A1	Accept omission of modulus
				[6]	

Question		Answer	Marks	Guidance
5	(i)	Use $\cos \theta = \frac{a.b}{ a b }$	M1	
		Obtain $\left(\cos\theta = \frac{6}{12}\right)\theta = 60 \text{ or } \frac{1}{3}\pi \text{ or } 1.05 \text{ or better}$	A1	Better: 1.0471976 (rot)
			[2]	
5	(ii)	Indicate $\mathbf{a} - \mathbf{b}$ is vector joining ends of \mathbf{a} and \mathbf{b} or equiv $ \mathbf{a} - \mathbf{b} = \mathbf{a} - \mathbf{b} $, or anything similar, $\rightarrow M0$	M1	
		Use cosine rule correctly on 3, 4 and included (i) angle Obtain $\sqrt{13}$ or 3.61 or better (No ft from wrong θ)	M1 A1	Or any other correct method 3.6055513 (rot)
			[3]	
6		<u>Attempt</u> diff to connect du and dx or find $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	<u>no</u> accuracy, <u>not</u> just $du = dx$
		Correct <u>e.g.</u> $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $dx = (2u-2)du$ AEF	*A1	
		Indefinite integral <u>in terms of $u = \int \frac{2u-2}{u} (du)$</u>	A1dep*	
		Provided of form $\int \frac{au+b}{u} (du)$, change to $\int a + \frac{b}{u} (du)$	M1	Or by parts
		Integrate to $au + b \ln u $ or $au + b \ln u$	A1 ft	
		Use correct variable for limits after attempt at integral of $f(u)$	M1	i.e. use new values of u (usually) or orig values of x (if resubst)
		Show as $8-2\ln 4-6+2\ln 3$ (oe) $= 2+2\ln \frac{3}{4}$ AG WWW	AI	Some numerical working must be snown before giving final ans
			[7]	

Question	Answer	Marks	Guidance
7	Satisfactory start method eg <u>attempt</u> square of $(1 - \sin 3x)$	M1	Not e.g. $\frac{(1-\sin 3x)^3}{3}$.
	[N.B. The squaring process might include a term $\sin^2 9x$]		
	<u>The next 2 marks are awarded for integrating</u> - $2\sin 3x$		
	$Obtain \int -2\sin 3x dx = \frac{2}{3}\cos 3x$	*Al	
	Obtain $-\frac{2}{3}$ or $(+0)-(+\frac{2}{3})$	A1dep*	
	<u>The next 3 marks are awarded for integrating $\sin^2 3x$</u>		<u>or for integrating $\sin^2 ax$ where $a = 6$ or 9 only</u>
	Use $\sin^2 3x = k(+/-1+/-\cos 6x)$	M1	$\sin^2 ax = k(+/-1+/-\cos 2ax)$
	Correct version = $\frac{1}{2}(1 - \cos 6x)$	A1	$Correct = \frac{1}{2} (1 - \cos 2ax)$
	$\int \cos 6x dx = \frac{1}{6} \sin 6x \text{ , seen anywhere, indep}$	B1	or $\int \cos 2ax dx = \frac{1}{2a} \sin 2ax$
	Final answer = $\frac{1}{4}\pi + their - \frac{2}{3}$	A1	Check that the $\frac{1}{4}\pi$ is from $\left[\frac{3}{2}x - \frac{1}{12}\sin 6x\right]_0^{\frac{1}{6}\pi}$
		[7]	

Question		on	Answer	Marks	Guidance
8	(a)		$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1	
			$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
			Substitute $(-1,-1)$ for (x, y) & attempt to solve for $\frac{dy}{dx}$	M1	or solve then substitute
			Obtain $\frac{dy}{dx} = -1$ WWW	A1	
				[4]	
8	(b)	(i)	Tangent parallel y-axis $\rightarrow \frac{dx}{dt} = 0$ or $\frac{dy}{dx} \rightarrow \infty$ or $\frac{dy}{dx} = \infty$	M1	Accept clear intention
			Obtain $t = 0$	A1	
			(-1,0) with no other possibilities	A1	Accept $x = -1, y = 0$
				[3]	
8	(b)	(ii)	State or imply or use $\frac{dy}{dx} = \frac{dx}{dx}$	M1	
			State of imply of use $\frac{dt}{dt} = \frac{dt}{dt}$		
			Produce $3t^2 + 1 = 4t$ oe	A1	
			$t = \frac{1}{3}$ or 1	A1	
				[3]	

Q	Question		Answer	Marks	Guidance
9	(i)		$\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$	B1	i.e. correct partial fractions
			$A(x-2)^{2} + B(x+1)(x-2) + C(x+1) = x^{2} - x - 11$	M1	or equivalent identity or method
			A = -1	A1	B1 if cover up method used
			B = 2 $C = -3$	Al Al	B1 if cover up method used
				[5]	1
			<u>Special Cases</u> The problems arise when we see how candidates deal with the de	enominator ($(x-2)^2$.
			$\frac{A}{x+1} + \frac{Bx+C}{(x-2)^2}$; allow B1 for PF format, M1 for associated identi	ty, B1 for A	$= -1 (\max 3)$
			$\frac{A}{x+1} + \frac{B}{x-2} + \frac{Cx+D}{(x-2)^2}$; allow B1 for PF format, M1 for assoc iden	ntity, B1 for	$A = -1 \pmod{3}$
			$\frac{A}{x+1} + \frac{Bx}{(x-2)^2}$; allow B0 for PF format, M1 for associated identity (max 1, even if $A = -1$)		
			$\frac{A}{x+1} + \frac{B}{(x-2)^2}$: allow B0 for PF format, M1 for associated identi	ty (max 1, e	ven if $A = -1$)
9	(ii)		No marks are to be awarded for integrating a fraction with a zero numerator. Irrespective of the format used for the Partial		
			Fractions in part (i), award marks as follow:		
			$\int \frac{\lambda}{x+1} dx = \left(\lambda \text{ or } \frac{1}{\lambda}\right) \ln(x+1) \qquad \text{or}$	B1	$\int \frac{\lambda}{x-2} \mathrm{d}x = \left(\lambda \text{ or } \frac{1}{\lambda}\right) \ln(x-2)$
			$\int \frac{\mu}{(x-2)^2} dx = -\left(\mu \operatorname{or} \frac{1}{\mu}\right) \cdot \frac{1}{x-2}$	B1	
			$\left -\frac{3}{2} \right $	B1 ft	ft $\frac{C}{2}$
			$1+\ln\frac{16}{5}$ ISW for either term	B1 ft	ft + $\ln\left\{\left(\frac{5}{4}\right)^{A}.2^{B}\right\}$
				[4]	

Question		on	Answer	Marks	Guidance
10			If MR, mark according to the scheme & follow-through from candidate's data. Award M, A & B marks (where possible) & apply penalty of 1 mark (by withholding one A mark in the question). E.g. in (i), product to be 'correct' & 'not perpendicular' to be stated.		
	(i)		α . Full justification that $t = -1$. May be 'by inspection'. [No equations not satisfied by $t = -1$ to be shown] ['unusual' attempts must be carefully checked; if convinced, award the B1 e.g. displacement vector between $(-3\mathbf{i} + 6\mathbf{k})$ and	B1	No other $t = to$ be mentioned
			$\beta. \text{ Consider scalar product } \begin{pmatrix} -3 \\ 0 \\ 6 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	M1	
			Show $-6 + (0) + 6 = 0$ and somewhere state perpendicularity	A1	
			oe [If $\cos \theta = \frac{\mathbf{a}.\mathbf{b}}{ \mathbf{a} \mathbf{b} }$ quoted, ignore accuracy of work involving	[3]	
			$ \mathbf{a} $ and $ \mathbf{b} $]		
10	(ii)		Use $\mathbf{r} = \mathbf{v} (-3\mathbf{i} + 6\mathbf{k})$ and ℓ_2	*M1	or $(-3i+6k) + v(-3i+6k)$
			Attempt to produce at least two relevant equations Solve two equations & produce $(v, s) = (\frac{1}{3}, -3)$ soi	M1dep* A1	$(v,s) = \left(-\frac{2}{3}, -3\right)$
			Demonstrate clearly that these satisfy third equation	B1 [4]	Numerical proof required
10	(iii)		Method for finding $\left \overrightarrow{OB} \right $ or $\left \overrightarrow{OA} \right $ or $\left \overrightarrow{AB} \right $	M1	Method for finding \overrightarrow{OB} or \overrightarrow{BO} or \overrightarrow{AB} or \overrightarrow{BA}
			$\left \overrightarrow{OB}\right = \sqrt{5}$ or $\left \overrightarrow{OA}\right = \sqrt{45}$ oe or $\left \overrightarrow{BA}\right = \sqrt{20}$ oe	A1	$\overrightarrow{OB} = \begin{pmatrix} -1\\0\\2 \end{pmatrix} \text{or} \overrightarrow{BA} = \begin{pmatrix} -2\\0\\4 \end{pmatrix}$
			Obtain 3:2 oe	A1	
				[3]	Answer 3:2 WW \rightarrow B3